Пожарная опасность организации
по программе обучения: пожарно-технический минимум для киномехаников
Обучающиеся: сотрудники (работники) предприятия
Разработчик : Общероссийская Общественная Организация «ВДПО»
Содержание
- Причины пожаров от эксплуатации кинотехнического и электротехнического оборудования
- Меры предупреждения и устранения причин, способствующих возникновению пожаров. Профилактические мероприятия, планово-предупредительные работы
- Причины возникновения пожаров от электрического тока и меры по их предупреждению. классификация взрывоопасных и пожароопасных зон по правилам устройства электроустановок (далее - ПУЭ)
- Статическое электричество и его пожарная опасность. Меры профилактики
ВНИМАНИЕ! При изучение данной темы следует учитывать, что деятельность по обеспечению пожарной безопасности детально регламентируется действующим законодательством, которое в рамках проводимых реформ активно изменяется, поэтому рекомендуется положения нормативных правовых актов и нормативных документов в области пожарной безопасности уточнять в актуальных редакциях.
1. Причины пожаров от эксплуатации кинотехнического и электротехнического оборудования.
Анализ статистики пожаров с 2014 по 2018 гг. в помещениях киноаппаратных показал причины возникновения пожаров*:
- Разряд статического электричества 7 %
- Нарушение правил технической эксплуатации электрооборудования 36 %
- Нарушение правил технической эксплуатации и выбора аппаратов защиты электрических сетей 28 %
- Прочие причины, связанные с нарушением правил устройства и эксплуатации электрооборудования 29 %
* категории взяты из Приказа МЧС России от 26.12.2014 № 727 «О совершенствовании деятельности по формированию электронных баз данных учета пожаров (загораний) и их последствий»
Из статистики пожаров киноаппаратных, что все пожары связаны с электроустановками, более 90 % – это нарушение правил эксплуатации электрооборудования.
Нарушения эксплуатации улектроустановок, как правило приводят к короткому замыканию или перегреву.
Короткие замыкания
Короткие замыкания возникают в результате нарушения изоляции токоведущих частей электроустановок.
Опасные повреждения кабелей и проводок могут возникать вследствие чрезмерного растяжения, перегибов, в местах подсоединения их к электродвигателям или аппаратам управления, при земляных работах и т. п. При нарушении изоляции на жилах кабеля возникают утечки тока, которые затем перерастают в токи короткого замыкания. В зависимости от характера повреждения внутри кабеля может нарастать аварийный процесс короткого замыкания с сопутствующим мощным выбросом в окружающую среду искр и пламени.
Так как многие виды электрооборудования не являются влаго- и пыленепроницаемыми, то производственная пыль (особенно токопроводящая сажа, копоть, графит), химически активные вещества и влага проникают внутрь их оболочки и оседают на поверхности электроизоляционных частей и материалов. Некоторые нагревающиеся части электрооборудования при остановке охлаждаются, поэтому на них часто выпадает конденсат воды. Все это может привести к повреждению и переувлажнению изоляции и вызвать чрезмерные токи утечки, дуговые короткие замыкания, перекрытия или замыкания как изолированных обмоток, так и других токоведущих частей.
Изоляция электроустановок может повреждаться при воздействии на нее высокой температуры или пламени во время пожара, из-за перенапряжения в результате первичного или вторичного воздействия молнии, перехода напряжения с установок выше 1000 В на установки до 1000 В и т. д.
Причиной короткого замыкания может быть схлестывание проводов воздушных линий электропередач под действием ветра и от наброса на них металлических предметов. К возникновению короткого замыкания могут привести ошибочные действия обслуживающего персонала при различных оперативных переключениях, ревизиях и ремонтах электрооборудования.
Перегрузки
Перегрузкой называется такой аварийный режим, при котором в проводниках электрических сетей, машин и аппаратов возникают токи, длительно превышающие величины, допускаемые нормами.
Одним из видов преобразования электрической энергии является переход ее в тепловую. Электрический ток в проводниках электрических сетей, машин и аппаратов выделяет теплоту, рассеивающуюся в окружающем пространстве. Проводники при этом могут нагреваться до опасных температур. Так, для голых медных, алюминиевых и стальных проводов воздушных линий максимально допустимая температура не должна превышать 70°С. Объясняется это тем, что с повышением температуры усиливаются окислительные процессы и на проводах (особенно в контактных соединениях) образуются окиси, имеющие высокое сопротивление; увеличивается сопротивление контакта, и следовательно, выделяемая в нем теплота. С увеличением температуры соединения увеличивается окисление, а это может привести к полному разрушению контакта провода.
Весьма опасным является перегрев изолированных проводников, особенно с горючей изоляцией, приводящий к ускорению её износа (старению). Старение изоляции оценивается в относительных единицах. За единицу принимается старение, соответствующее работе при температуре, допускаемой нормами для данного рода изоляции. Для расчетов обычно пользуются установленным экспериментально «восьмиградусным правилом». По этому правилу длительное повышение температуры проводника сверх допустимого на каждые 8°С, приводит к ускорению износа его изоляции вдвое.
Опыты показали, что продолжительность срока службы изоляции в электродвигателях при нагреве до 100°С будет 10 – 15 лет, а при 150°С сокращается до l,5 – 2 мес.
Старение изоляции характеризуется уменьшением ее эластичности и механической прочности. Сильно состарившаяся изоляция под влиянием вибрации при работе трансформаторов, генераторов, электродвигателей и т. п. начинает растрескиваться и ломаться. Следствием этого могут быть электрический пробой изоляции и повреждение электроустановки, а при наличии сгораемой изоляции и пожаро- и взрывоопасной среды – пожар или даже взрыв.
Причиной возникновения перегрузки может быть неправильный расчет проводников при проектировании. Если сечение проводников занижено, то при включении всех предусмотренных электроприёмников возникает перегрузка. Перегрузка может возникнуть из-за дополнительного включения электроприёмников, на которые проводники сети не рассчитаны.
Переходные сопротивления
Переходными называются сопротивления в местах перехода тока с одной контактной поверхности на другую через площадки действительного их соприкосновения. В таком контактном соединении за единицу времени выделяется некоторое количество теплоты, пропорциональное квадрату тока и сопротивлению участков действительного соприкосновения.
Количество выделяемой теплоты может быть столь значительным, что места переходных сопротивлений сильно нагреваются. Следовательно, если нагретые контакты будут соприкасаться с горючими материалами, возможно их воспламенение, а соприкосновение этих мест со взрывоопасными концентрациями горючих пылей, газов и паров легковоспламеняющихся жидкостей явится причиной взрыва.
2. Меры предупреждения и устранения причин, способствующих возникновению пожаров. Профилактические мероприятия, планово-предупредительные работы.
Профилактика короткого замыкания
Наиболее действенным предупреждением короткого замыкания являются правильный выбор, монтаж и эксплуатация электрических сетей, машин и аппаратов. Конструкция, вид исполнения, способ установки и класс изоляции применяемых машин, аппаратов, приборов, кабелей, проводов и прочего электрооборудования должны соответствовать номинальным параметрам сети или электроустановки (току, нагрузке, напряжению), условиям окружающей среды и требованиям ПУЭ (Правила устройства электроустановок). Особенно строго следует соблюдать регулярное проведение осмотров, ремонтов, планово-предупредительных и профилактических испытаний электрооборудования во взрывоопасных установках как при приемке его, так и при эксплуатации. Кроме того, должна быть предусмотрена электрическая защита сетей и электрооборудования. Основное назначение электрической защиты заключается в том, что питание поврежденной в любом месте проводки должно быть прекращено раньше, чем произойдет опасное развитие аварии. Наиболее эффективными аппаратами защиты являются быстродействующие реле и выключатели, установочные автоматы и плавкие предохранители.
Профилактика перегрузок
Чтобы избежать перегрузки или ее последствий, при проектировании необходимо правильно выбирать сечения проводников сетей по допустимому току, а также электродвигатели и аппараты управления.
В процессе эксплуатации электрических сетей нельзя включать дополнительно электроприёмники, если сеть на это не рассчитана.
При эксплуатации машин и аппаратов не следует допускать нагрев их до температуры, превышающей предельно допустимую.
Для защиты электроустановок от токов перегрузки наиболее эффективными являются автоматические выключатели, тепловые реле магнитных пускателей и плавкие предохранители.
Профилактика пожаров от контактных сопротивлений
Чтобы увеличить площади действительного соприкосновения контактов, необходимо увеличить силы их сжатия путем применения упругих контактов или специальных стальных пружин. Если контактные плоскости прижать друг к другу с некоторой силой, мелкие бугорки в местах касания плоскостей будут несколько сминаться, при этом увеличатся размеры соприкасающихся основных площадок и появятся новые дополнительные площадки касания. Переходное сопротивление контакта снизится, уменьшится и нагрев контактного устройства.
Для отвода тепла от точек соприкосновения и рассеивания его в окружающую среду необходимы контакты с достаточной массой и поверхностью охлаждения. Особое внимание следует уделять местам соединения проводов и подключения их к контактам вводных устройств электроприемников. На съемных концах для удобства и надежности контакта применяют наконечники различной формы и специальные зажимы, что особенно важно для алюминиевых проводов. Для надежности контакта предусматривают также пружинящие шайбы и бортики, препятствующие растеканию алюминия. В местах, подвергающихся вибрации, при любых проводниках необходимо применять пружинящие шайбы или контргайки. Все контактные соединения должны быть доступны для осмотра — их систематически контролируют в процессе эксплуатации.
Существует несколько способов соединения проводов; основные из них — пайка, сварка, механическое соединение под давлением (опрессование). При пайке необходим источник тепла с температурой, достаточной для нагревания соединяющихся проводов и плавления дополнительного металла (олова или оловянно-свинцовых припоев). Во время пайки изолированных проводов следует применять предохранительные меры, чтобы не повредить изоляцию.
Сварка проводов (электрическая и газопламенная) обеспечивает надежный электрический контакт (что особенно важно для алюминиевых проводов), однако это сложная операция, требующая большого опыта. Соединение проводов пайкой и сваркой не допускается в помещениях со взрывоопасной средой.
Наиболее распространено в настоящее время соединение проводов механической опрессовкой специальными клещами и гидропрессом. Этот способ дает хороший электрический контакт, не требует источника тепла и дефицитных припоев и допускается в помещениях с взрывоопасной средой.
Жилы проводов и кабелей в местах соединений и ответвлений должны иметь такую же изоляцию, как и в целых местах этих проводов и кабелей. Для уменьшения влияния окисления на контактное сопротивление размыкающиеся контакты конструируют таким образом, чтобы размыкание и замыкание их сопровождались скольжением (трением) одного контакта по другому. При этом тонкая пленка окислов разрушается, удаляется с площадки действительного касания контактов, и происходит самоочищение контактов.
Контакты из меди, латуни и бронзы защищают от окисления лужением тонким слоем олова или сплава олова и свинца. Лужение медных контактов особенно эффективно в наружных установках, в сырых или содержащих активные газы и пары помещениях и при температуре воздуха выше 60°С. В процессе эксплуатации необходимо систематически следить за тем, чтобы контакты аппаратов, машин и т. п. плотно и с достаточной силой прилегали друг к другу. Существенную роль играет защитная смазка, предохраняющая контактную поверхность от быстрого окисления.
3. Причины возникновения пожаров от электрического тока и меры по их предупреждению. классификация взрывоопасных и пожароопасных зон по правилам устройства электроустановок (далее - ПУЭ).
Принципы оценки пожарной опасности электрических изделий включают два основных направления: определение возможности возникновения пожара и оценку последствий горения.
Оценка возможности возникновения пожара отражает комплексный подход, включающий: использование вероятностных методов, исходя из особенностей физико-химических явлений, способствующих зажиганию, а также экспериментальных методов, основанных на прямых измерениях и сравнении полученных результатов с допустимыми по нормам (например: полученная при испытаниях фактическая температура нагрева горючих изоляционных материалов сравнивается с критической; длина выгоревшей части кабельной прокладки сравнивается с классификационным показателем 2,5.
Пожарную опасность может представлять любая электрическая цепь, в которую локально, в течение определенного времени подключается мощность более 15 Вт. В этот диапазон входит большинство электрических изделий.
В соответствии с ГОСТ 12.1.004-91. ССБТ. «Пожарная безопасность. Общие требования» условие пожаробезопасности электротехнического изделия имеет вид:
Qп = Qп.р*Qп.з.*Qн.з* Qв,
где:
- Q п.p - вероятность возникновения характерного пожароопасного режима в составной части изделия (возникновения КЗ, перегрузки, повышения переходного сопротивления и т.п.), 1/год;
- Q п.з. - вероятность того, что значение характерного электротехнического параметра (тока, переходного сопротивления и др.) лежит в диапазоне пожароопасных значений;
- Q н.з - вероятность несрабатывания аппарата защиты (электрической, тепловой и т.п.);
- QB - вероятность достижения горючим материалом критической температуры или его воспламенения.
Полученные данные о фактических вероятностях возникновения пожаров сравнивают с нормативной величиной 10-6 в год в расчете на одно изделие). Изделие считается пожаробезопасным, если фактическая или расчетная (для новых изделий) вероятность возникновения пожара не превышает нормативной.
Показатели пожарной безопасности электроустановок вносятся в Нормативные документы (государственные стандарты, ведомственные нормы и правила, технические паспорта и т.п.) в виде указаний по монтажу и эксплуатации электрооборудования.
Опасность возникновения пожаров при эксплуатации электроустановок заключается в наличии сгораемой изоляции электрических сетей машин и аппаратов, кислорода воздуха (или другого окислителя) и источника зажигания (электрического тока). Большинство изоляционных материалов (хлопчатобумажная и шелковая ткань, резина, лакоткани, бумага, картон, полистирол, полиэтилен, поливинилхлорид, трансформаторное масло и др.) сгораемые.
Причинами пожаров могут быть аварийные режимы работы электротехнических изделий: короткие замыкания, перегрузки проводников, машин и аппаратов; искры и электродуги; большие переходные сопротивления; вихревые токи, возникающие в массивных металлических деталях в результате изменения магнитных потоков, индуктирующих ЭДС (эти индуктированные токи замыкаются накоротко в толще деталей).
Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Основными причинами перегрузки являются:
- несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом);
- параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую);
- попадание на проводники токов утечки, молнии; повышение температуры окружающей среды.
Опасность перегрузки объясняется тепловым действием тока. Так, для кабелей с бумажной изоляцией срок их службы может быть определен по известному «восьмиградусному правилу», в соответствии с которым превышение температуры на каждые 8°С сокращает срок службы изоляции в 2 раза.. Правила устройства электроустановок (ПУЭ) регламентируют допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15°С.
Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя.
Коротким замыканием (КЗ) называется всякое замыкание между проводами, или между проводом и землей. Причиной возникновения КЗ является нарушение изоляции в электрических проводах и кабелях, машинах и аппаратах, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции; прямыми ударами молнии. При возникновении КЗ в цепи ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима. Опасность КЗ заключается в увеличении в сотни тысяч ампер силы тока, что приводит к выделению в самый незначительный промежуток времени большого количества тепла в проводниках, это вызывает резкое повышение температуры и воспламенение изоляции, расплавление материала проводника с выбросом искр, способных вызвать пожар горючих материалов (температура плавления алюминия составляет 660 оС, меди - 1085°С; температура кипения алюминия составляет ок. 25ОО°С, меди - 2540°С.
Воспламеняемость кабеля и проводника с изоляцией зависит от значения кратности тока короткого замыкания Ikз, т.е. от значения орошения IКЗ к длительно допустимому току кабеля или провода. Если эта кратность больше 2,5, но меньше 18 для кабеля и 21 для провода, то происходит воспламенение поливинилхлоридной изоляции.
В общем случае температура проводника, нагреваемого током короткого замыкания прямопропорционально зависит от квадрата силы тока короткого замыкания, сопротивления проводника и времени короткого замыкания, и обратно-пропорционально - от теплоемкости проводника и его массы.
Выбор электрических проводников по условиям короткого замыкания осуществляется из условия, что температура нагрева проводников при КЗ должна быть не выше предельно допустимых значений, которые регламентируются для проводов и кабелей с медными и алюминиевыми жилами в поливинилхлоридной и резиновой изоляции (150°С).
Внезапное снижение напряжения при КЗ негативно сказывается на работе электрооборудования и может привести к пожару за много метров от места КЗ.
Переходным сопротивлением (ПС) называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв. В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления.
Температура нагрева электрических контактов при возникновении повышенных переходных сопротивлений прямопропорционально зависит от электрической мощности, выделяющейся в контактных переходах и обратнопропорциональна площади поверхности теплообмена и общего коэффициента теплоотдачи. При этом электрическая мощность, выделяющаяся в контактных переходах, вычисляется как произведение силы тока в сети на сумму Падений напряжений в каждой контактной паре электрического соединения (для алюминия значение падения напряжения на контактных парах равно 0,28; для меди - 0,65).
Искрение и электродуга есть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами, ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд) С увеличением напряжения тлеющий разряд переходит в искровой, а придостаточной мощности искровой разряд может быть в виде электрической дуги. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва Федеральным законом «О пожарной безопасности» и Правилами пожарной безопасности в Российской Федерации ответственность за обеспечение пожарной безопасности электроустановок возлагается на руководителя предприятия, учреждения или организации. Основной задачей руководителя предприятия является проведение организационных мероприятий по обеспечению соответствующего противопожарного режима эксплуатации электроустановок на объекте, которые заключаются в соответствующей подготовке квалифицированного обслуживающего персонала, разработке эксплуатационных, должностных инструкций и инструкций по охране труда с включением вопросов пожарной безопасности. Электротехнический персонал должен проходить периодическую проверку знаний правил пожарной безопасности одновременно с проверкой знаний правил безопасности труда при эксплуатации электроустановок.
Требования Правил устройства электроустановок
Для предупреждения пожаров и аварий от коротких замыканий, перегрузок, больших переходных сопротивлений и других причин необходимы правильный выбор, монтаж и соблюдение установленного режима эксплуатации электрических сетей и электрооборудования (машин, аппаратов, устройств).
Правила устройства электроустановок (ПУЭ) распространяются на вновь сооружаемые и реконструируемые электроустановки до 500 кВ. Отдельные требования ПУЭ можно применять для действующих электроустановок, если это упрощает электроустановку. По отношению к реконструируемым электроустановкам требования ПУЭ распространяются лишь на реконструируемую часть электроустановок. ПУЭ разработаны с учетом обязательности проведения в условиях эксплуатации планово-предупредительных и профилактических испытаний, ремонтов электроустановок и их электрооборудования, а также систематического обучения и проверки обслуживающего персонала.
Электроустановки (ЭУ) по условиям электробезопасности разделяются на ЭУ до 1 кВ и ЭУ выше 1 кВ (по действующему значению напряжения).
Открытыми или наружными ЭУ называются электроустановки, незащищенные зданием от атмосферных воздействий. ЭУ, защищенные только навесами, сетчатыми ограждениями и т.п., рассматриваются как наружные.
Закрытыми или внутренними ЭУ называются электроустановки, внутри здания, защищающего их от атмосферных воздействий. Электропомещениями называются помещения или отгороженные, например, сетками, части помещения, доступные только для квалифицированного обслуживающего персонала, в которых расположены ЭУ.
Кроме того, в зависимости от климатической среды, помещения подразделяются на: сухие (нормальные) (влажность до 60%), влажные (влажность 60-75%), сырые (влажность более 75%), особо сырые (влажность близка к 100%), жаркие (температура более +35°С), пыльные, помещения с химически активной или органической средой.
Для обозначения обязательности выполнения требований ПУЭ применяются слова »следует», »необходимо» и производные от них. Слова »как правило» означают, что данное требование является преобладающим, а отступление от него должно быть обосновано. Слово »допускается» означает, что данное решение применяется в виде исключения как вынужденное (вследствие стесненных условий, ограниченных ресурсов необходимого оборудования, материалов и т.п.). Слово »рекомендуется» означает, что данное решение является одним из лучших, но не обязательным.
Применяемые в ЭУ электрооборудование и материалы должны соответствовать требованиям ГОСТ или ТУ, утвержденных в установленном порядке.
Конструкция, исполнение, способ установки и класс изоляции применяемых машин, аппаратов, приборов и прочего электрооборудования, а также кабелей и проводов должны соответствовать параметрам сети или электроустановки, условиям окружающей среды и требованиям соответствующих глав ПУЭ.
Применяемые в ЭУ электрооборудование, кабели, провода по своим нормированным, гарантированным и расчетным характеристикам Должны соответствовать условиям работы данной ЭУ.
Электроустановки и связанные с ними конструкции должны быть стойкими в отношении воздействия окружающей среды или защищены от этого воздействия.
Строительная и санитарно-техническая части ЭУ (конструкции здания и его элементов, отопление, вентиляция, водоснабжение и пр.) Должны выполняться в соответствии с действующими строительными нормами и правилами (СНиП) Госстроя СССР (Госстроя России) при обязательном выполнении дополнительных требований, приведенных в ПУЭ.
В ЭУ должны быть предусмотрены сбор и удаление отходов: химическиx веществ, масла, мусора, технических вод и т.п. В соответствии с действующими требованиями по охране окружающей среды должна быть исключена возможность попадания указанных отходов в водоемы, систему отвода ливневых вод, овраги, а также на территории, предназначенные для этих отходов.
В ЭУ должна быть обеспечена возможность легкого распознавания частей, относящихся к отдельным их элементам (простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка).
В жилых, общественных и тому подобных помещениях устройства служащие для ограждения и закрытия токоведущих частей, должны быть сплошные; в производственных помещениях и электропомещениях эти устройства допускаются сплошные, сетчатые или дырчатые. Ограждающие и закрывающие устройства должны быть выполнены так, чтобы снимать или открывать их было можно лишь при помощи ключей или инструментов.
Устройства, предназначенные для защиты проводов и кабелей от механических повреждений, по возможности должны быть введены в машины, аппараты и приборы, Пожаро- и взрывобезопасность ЭУ, содержащих маслонаполненные аппараты и кабели, а также электрооборудования, покрытого и пропитанного маслами, лаками, битумами и т.п., обеспечивается выполнением требований, приведенных в соответствующих главах ПУЭ. При сдаче в эксплуатацию указанные ЭУ должны быть снабжены противопожарными средствами и инвентарем в соответствии с действующими положениями.
Категории электроприемников и обеспечение надежности электроснабжения
Все ЭУ, в зависимости от их значимости, подразделяются в отношении обеспечения надежности электроснабжения на следующие три категории:
Электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству и т.п. Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы пожаров.
Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников
I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи.
Электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания. Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады. Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 суток допускается питание электроприемников II категории от одного трансформатора.
Электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий.
Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.
Выбор вида электропроводки, выбор проводов и кабелей и способа их прокладки по условиям пожарной безопасности
При выборе вида электропроводки и способа прокладки проводов и кабелей должны учитываться требования электробезопасности и пожарной безопасности.
Прокладка проводов и кабелей, труб и коробов с проводами и кабелями по условиям пожарной безопасности должна удовлетворять требованиям табл. 2.1.3 ПУЭ.
При открытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов (с изоляцией, но без оболочки) расстояние в свету от провода (кабеля) до поверхности оснований, конструкций, деталей из сгораемых материалов должно составлять не менее 10 мм. При невозможности обеспечить указанное расстояние провод (кабель) следует отделять от поверхности слоем несгораемого материала, выступающим с каждой стороны провода (кабеля) не менее чем на 10 мм. При скрытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов в закрытых нишах.
Классификация взрывоопасных и пожароопасных зон по ПУЭ
ПОЖАРООПАСНОЙ ЗОНОЙ называется пространство внутри и вне помещений, в пределах которого постоянно или периодически обращаются горючие (сгораемые) вещества и в котором они могут находиться при нормальном технологическом процессе или при его нарушениях.
Классификация пожароопасных зон
Зоны класса П-I - зоны, расположенные в помещениях, в которых обращаются горючие жидкости с температурой вспышки выше 61°С.
Зоны класса П-II - зоны, расположенные в помещениях, в которых выделяются горючие пыль или волокна с нижним концентрационным пределом воспламенения более 65 г/м3 к объему воздуха.
Зоны класса П-IIа - зоны, расположенные в помещениях, в которых обращаются твердые горючие вещества.
Зоны класса П-III - расположенные вне помещений зоны, в которых обращаются горючие жидкости с температурой вспышки выше 61°С или твердые горючие вещества.
Зоны в помещениях и зоны наружных установок в пределах до 5 м по горизонтали и вертикали от аппарата, в которых постоянно или периодически обращаются горючие вещества, но технологический процесс ведется с применением открытого огня, раскаленных частей либо технологические аппараты имеют поверхности, нагретые до температуры самовоспламенения горючих паров, пылей или волокон, не относятся в части их электрооборудования к пожароопасным. Класс среды в помещениях или среды наружных установок за пределами указанной 5-метровой зоны следует определять в зависимости от технологических процессов, применяемых в этой среде.
Зоны в помещениях и зоны наружных установок, в которых твердые, жидкие и газообразные горючие вещества сжигаются в качестве топлива или утилизируются путем сжигания, не относятся в части их элетрооборудования к пожароопасным.
Зоны в помещениях вытяжных вентиляторов, а также в помещениях приточных вентиляторов (если приточные системы работают с применением рециркуляции воздуха), обслуживающих помещения с пожароопасными зонами класса П-II, относятся также к пожароопасным зонам класса П-II. Зоны в помещениях вентиляторов местных отсосов относятся к пожароопасным того же класса, что и обслуживаемая ими зона. Для вентиляторов, установленных за наружными ограждающими конструкциями и обслуживающих пожароопасные зоны класса П-II и пожароопасные зоны любого класса местных отсосов, электродвигатели выбираются как для пожароопасной зоны класса П-III.
Электрические машины, приборы, аппараты, шкафы и сборки должны иметь минимальные допустимые степени защиты оболочек для пожароопасных зон классов П-I, П-IIа и П-III не менее IP44. Для П-II - не менее IP54 (IP44 при установке аппаратов и приборов, не искрящих по условиям работы).
Электрические светильники должны иметь степень защиты в классах пожароопасных зон П-I и П-II не менее IP53, в П-IIа и П-III - не менее IP23.
В помещениях с производствами (и складов) категории В электрооборудование должно удовлетворять, как правило, требованиям гл. 7.4 ПУЭ к электроустановкам в пожароопасных зонах соответствующего класса.
При размещении в помещениях или наружных установках единичного пожароопасного оборудования, когда специальные меры против распространения пожара не предусмотрены, зона в пределах до 3 м по горизонтали и вертикали от этого оборудования является пожароопасной.
Щитки и выключатели осветительных сетей рекомендуется выносить из пожароопасных зон любого класса, если это не вызывает существенного удорожания и расхода цветных металлов.
Электроустановки запираемых складских помещений, в которых есть пожароопасные зоны любого класса, должны иметь аппараты для отключения извне силовых и осветительных сетей независимо от наличия отключающих аппаратов внутри помещений. Отключающие аппараты должны быть установлены в ящике из несгораемого материала с приспособлением для пломбирования на ограждающей конструкции из несгораемого материала, а при ее отсутствии - на отдельной опоре.
Отключающие аппараты должны быть доступны для обслуживания в любое время суток.
Если в пожароопасной зоне любого класса по условиям производства необходимы электронагревательные приборы, то нагреваемые рабочие части их должны быть защищены от соприкосновения с горючими веществами, а сами приборы установлены на поверхности из негорючего материала. Для защиты от теплового излучения электронагревательных необходимо устанавливать экраны из несгораемых материалов, пожароопасных зонах любого класса складских помещений, а также в зданиях архивов, музеев, галерей, библиотек применение электронагревательных приборов запрещается.
4 Статическое электричество и его пожарная опасность. Меры профилактики.
Возникновение статического электричества - сложный процесс, зависящий от множества факторов. Электризация возникает при соприкосновении двух разнородных веществ, обладающих различными атомными и молекулярными силами притяжения на поверхности соприкосновения. Одна из контактирующих поверхностей должна быть из диэлектрического материала. При этом происходит перераспределение электронов или ионов веществ, образующее двойной электрический слой с зарядами противоположных знаков.
Образование двойных электрических слоев возможно при контакте тел и из одинаковых диэлектрических материалов за счет наличия на их поверхностях загрязнений, различной температуры тел и т.д.
Величина контактной разности и потенциалов весьма различна и зависит от диэлектрических свойств соприкасающихся поверхностей, их состояния, величины давления, с которыми поверхности прижаты друг к другу, а также от влажности поверхностей, между которыми возникла контактная электризация, каждая поверхность сохраняет свой заряд, а контактная разность потенциалов по мере уменьшения емкости между поверхностями может достичь десятков и сотен киловольт. Так, при максимальной плотности зарядов (30 мкКл/м2 и более) увеличение расстояния между наэлектризованными поверхностями на 1 см повышает разность потенциалов на десятки киловольт.
Энергию искры (Wи), Дж, способной возникнуть под действием напряжения между пластиной и каким-либо заземленным предметом, вычисляют по запасенной конденсатором энергий из формулы:
Wи= 0,5CU2,
где С - емкость конденсатора, Ф; U - напряжение, В.
Разность потенциалов между заряженным телом и землей измеряют электрометрами в реальных условиях производства. Если Wи > 0,4 Wмэз (Wмэз - минимальная энергия зажигания среды), то искру статического электричества рассматривают как источник зажигания.
Реальную опасность представляет «контактная» электризация для, работающих с движущимися диэлектрическими материалами. При соприкосновении человека с заземленным предметом возникают искры с энергией от 2,5 до 7,5 МДж.
Ниже приведены потенциалы от электрического поля статического электричества, кВ:
Хождение людей в обуви на резиновых подошвах – 1;
Езда на автомобиле с резиновыми шинами по бетонной дорожке –3;
Вынимание шерстяной одежды из бензина – 5;
Распыление краски – 10;
Хождение людей по шерстяному ковру – 14;
Движение кожаного приводного ремня (со скоростью 15 м/с) – 80;
При разности потенциалов 3 кВ искровой разряд может воспламенить почти все горючие газы, а при 5 кВ также большую часть горючих пылей.
Токи при статической электризации обычно составляют микроамперы. Так, при протекании бензина к цистернам по трубопроводу величина токов составила от 1 до 10 мкА. При этом ток оказался прямо пропорциональным скорости течения бензина.
Минимальная энергия, необходимая для воспламенения паро- и газовоздушных взрывоопасных смесей составляет 0,009-2 мДж, а для пылевоздушных и твердых материалов 2-250 мДж. Минимальная энергия зажигания водорода составляет 0,017 мДж, винилацетата - 0,7 мДж, хлопка - 25 мДж, крахмала картофельного - 45 мДж, резины - 50 мДж. Разряды статического электричества не в состоянии воспламенять смеси с минимальной энергией воспламенения 100 мДж и выше.
Для измерения параметров статического электричества применяются:
- индикатор статических зарядов марки: ИСПИ-4 (потенциал заряженной поверхности до 50 кВ; взрывозащищенный), МИЭП-1 и МИЭП-2 (потенциал до 40кВ; взрывозащищенный);
- статический вольтметр с датчиком СМ-2/С-95 (напряжение 0,03-3 кВ; взрывозащищенный);
- электрометр электронного типа: ПК-2-ЗА (до 50 кВ), П2-1 (напряженность электрического поля до 50 кВ/м), П2-2 (до 2,5 кВ), ИСЭП-9 (до 260 кВ/м) и некоторые др.
Для исключения накапливания статического электричества на человеке обеспечивают быструю утечку зарядов с человека. С этой целью уменьшают сопротивление обуви и пола, обеспечивая работающих электропроводящей (антистатической) обувью (например, с кожаным верхом и подошвой из электропроводной резиновой пластины).
Покрытие пола, выполненное из бетона толщиной 3 см, спецбетона и пенобетона, ксилолита, настила из антистатической резины, считается электропроводящим.
Особое внимание следует уделять устранению электрического заряда с человека при выполнении некоторых ручных операций (промывка, чистка, протирка, проклеивание, прорезинивание) с применением бензина, бензола, ацетона, резинового клея и т.п.
Электростатическая искробезопасность объектов должна обеспечиваться за счет создания условий, предупреждающих возникновение разрядов статического электричества, способных стать источником зажигания объекта или окружающей и проникающей в него среды.
Для обеспечения электростатической искробезопасности объекта в нормальных и аварийных режимах необходимо определить:
- электростатическую искроопасность объекта;
- чувствительность объекта, окружающей и проникающей в него среды к зажигающему воздействию разряда статического электричества.
Электростатическая искроопасность объекта выражается максимальной энергией разрядов статического электричества W, которые могут возникнуть внутри объекта или с его поверхности.
Электростатическую искроопасность объекта определяют следующие показатели:
- электростатические свойства материалов, составляющие объект - удельное объемное электростатическое сопротивление, удельное поверхностное электрическое сопротивление, относительная диэлектрическая проницаемость, постоянная времени релаксации;
- геометрические параметры объекта - данные о расположении объемного и поверхностного электрического заряда относительно заземленных электропроводных поверхностей, данные о конфигурации (форме, толщине) покрытия, пленок или непроводящих стенок, являющихся элемента объекта;
- динамические характеристики процессов в объекте - скорость относительного перемещения, находящихся в контакте тел, слоев жидкости или сыпучих материалов, величина взаимного давления находящихся в контакте тел, интенсивность перемещения, диспергирования, скорость деформации твердых тел;
- параметры, характеризующие окружающую и проникающую в объект среду температура, давление, влажность.
По степени электростатической искробезопасности объекты подразделяются на три класса: Э1, Э2, ЭЗ. Меры по обеспечению электростатической искробезопасности объекта выбирают в зависимости от класса его электростатической искроопасности.
Объект относят к классу Э1 при отсутствии возможности возникновения разрядов статического электричества, способных зажечь среду с минимальной энергией зажигания более 10-4 Дж, например заземленный объект заведомо относится к классу Э1, если он не содержит веществ и материалов с удельным объемным электрическим сопротивлением более 105 Ом-м и в объекте отсутствуют процессы диспергирования.
Объекты относят к классу Э2 при возможности возникновения разрядов статического электричества, способных зажечь среду с минимальной энергией зажигания более 10 –4 Дж, при отсутствии возможности возникновения разрядов, способных зажечь среду с минимальной энергией зажигания более 10 -1 Дж, например к классу Э2 относятся объекты с заземленным электропроводным оборудованием, в которых допускается наличие взвешенных сыпучих, волокнистых и пористых воздухопроницаемых веществ и материалов, а также материалов, которые имеют хотя бы один из следующих показателей:
- постоянная времени релаксации от 10 -6до 10 -1 с;
- удельное объемное электрическое сопротивление от 105 до 1010 Ом-м.
Объект относят к классу ЭЗ при возможности возникновения разрядов статического электричества, способных зажечь среду с минимальной энергией зажигания более 10 -1 Дж, например, объект, относится к классу ЭЗ, если в нем возможны скользящие разряды по поверхности диэлектриков или их пробой.
Чувствительность объекта, окружающей или проникающей в объект среды к зажигающему воздействию разрядов статического электричества определяется минимальной энергией зажигания веществ и материалов, из которых изготовлен объект, а также окружающей и проникающей в объект среды.
Электростатическая искробезопасность объекта достигается при выполнении соотношения:
W<KWmi№,
где W - максимальная энергия разрядов, которые могут возникнуть внутри объекта или с его поверхности, Дж; К - коэффициент безопасности, выбираемый из условий допустимой (безопасной) вероятности зажигания; в случае невозможности определения вероятности принимают равным 0,4; Wmi№ - минимальная энергия зажигания веществ и материалов.
Электростатическую искробезопасность объектов следует обеспечивать снижением электростатической искроопасности объекта (снижением W), а также снижением чувствительности объектов, окружающей и проникающей в них среды к зажигающему воздействию статического электричества (увеличением Wmi№)
Снижение чувствительности объектов, окружающей и проникающей в них среды к зажигающему воздействию разрядов статического электричества следует обеспечивать регламентированием параметров производственных процессов (влагосодержание и дисперсность аэровзвесей, давление и температуру среды и др.), влияющих на W.
Средства защиты от статического электричества
Средства коллективной защиты от статического электричества по принципу действия делятся на следующие виды:
– заземляющие устройства;
– нейтрализаторы;
– увлажняющие устройства;
– антиэлектростатические вещества;
–экранирующие устройства.
Нейтрализаторы по принципу ионизации делятся на:
–индукционные;
– высоковольтные;
–лучевые;
– аэродинамические.
Увлажняющие устройства по характеру действия делятся на:
– испарительные;
– распылительные.
Антиэлектростатические вещества по способу применения делятся на:
– вводимые в объем;
– наносимые на поверхность.
Экранирующие устройства по конструктивному исполнению делятся на:
– козырьки;
– перегородки.
Средства индивидуальной защиты в зависимости от назначения делятся на:
– специальную одежду антиэлектростатическую;
– специальную обувь антиэлектростатическую;
– предохранительные приспособления антиэлектростатические (кольца и браслеты);
– средства зашиты рук антиэлектростатические.
Требования к заземляющим устройствам
Независимо от применения других СЗСЭ заземление должно применяться на всех электропроводных элементах технологического оборудования и других объектов, на которых возможно возникновение или накопление электростатических зарядов.
Величина сопротивления заземляющего устройства, предназначенного исключительно для защиты от статического электричества, должна быть не выше 100 Ом.
Заземляющие устройства должны применяться на электризующихся движущихся узлах производственного оборудования, изолированных от заземленных частей.
Требования к нейтрализаторам
Нейтрализаторы должны соответствовать требованиям ГОСТ 12.1.006, санитарно-гигиенических норм допустимых уровней ионизации воздуха в производственных и общественных помещениях, норм радиационной безопасности, основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующих излучений, утвержденных Министерством здравоохранения).
Антиэлектростатические вещества должны обеспечивать снижение удельного объемного электрического сопротивления материала до величины 107 Ом-м, удельного поверхностного электрического сопротивления до величины 109 Ом, метод определения которых указан в ГОСТ 6433.2, ГОСТ 6581. Содержание паров антистатиков в рабочей зоне не должно превышать предельно допустимых концентраций по ГОСТ 12.1.005.
Экранирующие устройства должны быть заземлены в соответствии с требованиями ПУЭ.
Для изготовления антиэлектростатической специальной одежды должны применяться материалы с удельной поверхностным электрическим сопротивлением не более 107 Ом.
Электрическое сопротивление между токопроводящим элементом антиэлектростатической специальной одежды и землей должно быть от 106 до 108 Ом.
Электрическое сопротивление между подпятником и ходовой стороной подошвы обуви должно быть от 106 до 108 Ом.
Антиэлектростатические кольца и браслеты должны обеспечивать электрическое сопротивление в цепи человек-земля от 106 до 107Ом. Заземляющий проводник антиэлектростатического браслета должен обеспечивать свободу перемещения рук.
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ
- Причины возникновения пожаров от электрического тока.
- Меры по предупреждению пожаров от электрического тока.
- Условия обеспечения электростатической искробезопасности.
ЛИТЕРАТУРА
- Федеральный закон от 21 декабря 1994 г. № 69-ФЗ «О пожарной безопасности» (с изменениями и дополнениями);
- Федеральный закон от 22.07.2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»;
- Постановление Правительства РФ от 25.04.2012 № 390 (ред. от 07.03.2019) «О противопожарном режиме» (вместе с «Правилами противопожарного режима в Российской Федерации»);
- Правила устройства электроустановок: 7-е издание (ПУЭ)/ Главгосэнергонадзор России. М.: Изд-во ЗАО «Энергосервис», 2007. 610 с;
- Приказ МЧС России от 26.12.2014 № 727 «О совершенствовании деятельности по формированию электронных баз данных учета пожаров (загораний) и их последствий».